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ABSTRACT

The Statistical Mechanical Neural Computer (SMNC) developed in this thesis

utilizes a Statistical Mechanical Nonlinear Algorithm (SMNA) to determine the long-

time probability distribution of highly nonlinear stochastic systems. The use of the

SMNA and a novel mesoscopic scaling technique help provide the SMNC with the
.- '.

capabilities of neural computers without the drawbacks of huge connection matrices and

their attendant computational requirements.

In this thesis, the SMNC is initially used to verify the ability of the SMNA to

duplicate relatively simple, single variable path integral solutions to nonlinear

Fokker-Planck equations. After the fundamental algorithms are validated, the SMNC's "

ability to simulate a two-variable, multicellular problem by modeling a portion of the

neocortex consisting of 10 neural units is discussed.

There are many important applications of the SMNC and its unique SMNA to C 3  % %

systems including radar, sonar and electronic signals processing, missile guidance

systems and an integrated battle management system. Such C systems will benefit from 0

the SMNC'S potential to efficiently filter large amounts of data, recognize patterns and

anticipate, with some degree of uncertainty, the future state of highly nonlinear stochastic ".

systems.
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I. INTRODUCTION

Military tacticians have traditionally studied historical accounts of battles in order to

gain an intuitive appreciation for the effects of variables such as force size, geographic

positioning and weapons capability on the outcome of battles. These studies are

conducted in the hope of gaining some tactical advantage over enemy forces in future

battles. The study of simulated battles, that is military exercises, enhances this effort

since battle variables can be controlled individually in repeated "engagements" and thus

their effect on the outcome of the "battle" can be determined more precisely.

Unfortunately, battles (and exercises) are highly stochastic events with a large number of

variables, and significant analysis requires a large number of repetitions in order to

produce statistically significant results. Further, modem military exercises involving

large quantities of men and equipment are expensive and time consuming. At present
% ,

there is just not enough battle data, real or exercise, available to satisfy the needs of

analysts.

War gaming and computer simulation of large-scale combat scenarios would seem to

present a viable solution to this dilemma given the recent technological breakthroughs in

computer science. But the level of acceptance of computer simulations in major military

battle management and procurement decisions appears to be low. Military planners need

the capability to judge the ability of a computer simulation or model to accurately

replicate actual, or at least exercise, battle data. Once a reasonable confidence level in 5

computer simulations is obtained, then the simulations can generate data for force level

or procurement decisions. One example might be a sensitivity analysis of sets of

6
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simulation data where specific weapons characteristics are varied. Such analysis could

prove to be extremely valuable in assigning proper weights to the differing characteristics

and determining their proper influence in the context of a full-scale battle scenario.

This research project involves the development of a statistical mechanical neural

computer (SMNC) which incorporates a Cauchy-driven Monte Carlo path-integral

algorithm for calculating nonlinear long-time probability distributions. Although perhaps

not immediately obvious, this SMNC offers a wide range of potential applications in the

3 I
field of military command control and communications (C such as

- validation of computer simulated combat data,

- efficient filtering of large amounts of data, 1%

- pattern recognition and learning.

A computer system with these features will certainly be of great utility in the Navy's
I

(C ) systems. A data filtering system could provide complete and rapid analysis of 'K-

acoustic, radar, or electronic warfare data. Pattern recognition and learning systems

might be used as part of a cruise missile seeker to provide an enhanced target I

discrimination capability. A system that combines several of these capabilities could -.-

form the core of a battle management system. It would analyze sensor and
I

communication data, recognize developing battle scenarios, anticipate the most likely

enemy actions, and suggest the courses of action most likely to favorably affect the .

outcome of the battle. I

The statistical mechanical neural computer presented here is a crucial step in the

process of building such a realtime computer system. The SMNC is a virtual computer

7

.4 ~ ~'. *4* .4.44 -



7M.

running in the C programming language on a VAX 11/785 operating under the UNIX

operating system. The choice of physical computer, programming language and

operating system with #hich to implement the SMNC was made based on equipment ,,

availability at the Naval Postgraduate School and the portability of the program to othersworking in the field.-

The SMNC incorporates a novel Statistical Mechanical Nonlinear Algorithm

(SMNA) set forth by Ingber in a series of papers on the Statistical Mechanics of

Neocortical Interactions (SMNI) [1-4] that reduces computational requirements to orders

of magnitude below those of more traditional neural network computers.

According to Haken [5], the solution of nonlinear Fokker-Planck equations can lead

to understanding of the state of variables in a complex system some time after the state of

the variables is known. The ability to generate a long-time probability distribution for

variables in nonlinear systems can provide valuable insight in many fields of science

including chemistry, fluid dynamics, biology, thermodynamics, and even economics.

Nonlinear Fokker-Planck equations are difficult to evaluate for all but the simplest

systems. Nevertheless, Wehner and Wolfer have set forth a technique for numerical

evaluation of path integral solutions for Fokker-Planck equations that has produced

excellent results [6].

The SMNA is a memory efficient algorithm that quickly finds an approximation of

the long-time probability distribution of nonlinear systems given an expression of a

short-time probability distribution called a Lagrangian. Lagrangians can be fit to combat

data such as that collected from repeated runs of JANUS computer simulated battles.

UNIX is a trademark of AT&T

8



Once the Lagrangian is found by a method like the one described by Upton [7], the ".

SMNC using the SMNA can, with some degree of uncertainty, predict the outcome of a
I

battle given the initial state of the system in terms of red and blue force compositions and

locations. The SMNA is capable of modeling multi-variable systems as well as systems

whose variables are influenced by what happens in other spatial grids.

Each year, the Office of Naval Research promulgates a list of priority research

items [8]. This thesis in concerned with two items on the current list; modeling of

heterogeneous, multivariable systems, and studies of neural architectures. ..-

Chapter II serves as a background chapter and explains the history and operation of

neural computing systems. This chapter also provides an overview of current work in

neural information processing. Chapter HI explains the operation of the statistical

mechanical nonlinear algorithm (SMNA). The SMNA is the core of the computational

efficiency of the SMNC. Once the algorithm is described, its operation is tested against

nonlinear functions whose solutions have been determined by other means. Chapter m

deals exclusively with single variable systems where the influence of neighboring "cells"

has no effect on the state of the variable. Chapter IV contains a mathematical description

of the statistical mechanical neural computer (SMNC) as used in a two-variable multi-

spatial simulation of the operation of the neocortex portion of the brain. This chapter

also explains the scaling methods used by the SMNC and how the microscopic scale can

be used to provide feedback and control to the mesoscopic or middle scale. The

summary, conclusions and recommendations for future work are presented in Chapter V.

9
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IL. AN INTRODUCTION TO NEURAL COMPUTERS

In late 1986 and early 1987 the popular press [9-15] carried cover articles heralding

neural net computers as a significant step in the creation of thinking machines. Neural.U
computers work by imitating the simultaneous interactions of the many neurons in the

brain of a living animal and are based on concepts originally set forth in the 1940's.

Early attempts to emulate the operation of the brain produced largely disappointing

results because of the widespread acceptance of faulty assumptions and the primitive

computers available at the time. In the 1960's, when Massachusetts Institute of

Technology's Marvin Minsky [16] and others criticized the concept on the grounds of

.nsufficient knowledge of the brain, funds evaporated and research declined. Since 1970

there has been renewed interest in neural networks [17,18]. The fruits of the renewed

interest are to be found in the dramatic results described in the popular press articles.

The human brain is composed of about 1010 neurons each receiving information

4 4from about 10 neighboring neurons and sending information in turn to 10 of its

fellows [19]. Since a network of only 200 simulated neurons can learn to read and talk

within a few hours [11], the computational and learning ability of 10 billion

interconnected neurons staggers the imagination. If shear numbers of neurons and their

interconnections provide stumbling blocks in an attempt to model a human brain, the

wealth of information available about the neuron itself at least provides some hope that

the neuron can be successfully modeled and smaller but nevertheless useful neural

computers constructed.

10
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A. THE BRAIN

A neuron is a specialized brain cell consisting of a nucleus, many fibrous dendrite

branches and a fibrous axon as in Figure 2.1 [14]. The dendrites are short tree-like

extensions of the cell body that receive afferent (incoming) signals from the longer,

thinner axons of other neurons. Neurons possess two characteristics not shared by other

cells in the human body, they are excitable and have process. Excitability means that a

neuron responds to certain stimuli with specific activity, and process permits the neuron

to transmit efferent (outgoing) signals over distance [20]. These properties are

fundamental to a neuron's information processing ability. Signals are chemically ...

transmitted from one neuron to another across a synaptic cleft between an axon and

dendrite. The signals received from the axons of neighboring neurons via the dendrites

are integrated in the cell body. This integration process then determines whether the

neuron will fire a signal to other neurons. S

About 65% of a neuron's synapses sre excitatory and encourage neural firing, while

others are inhibitory and exhibit an inclination to cancel the effect of excitatory synaptic,-

inputs [2]. Simply speaking, the neuron electrochemically sums all the excitatory and '.-

inhibitory signals received over a relaxation time of about 5 to 10 milliseconds. If the '.

summatior of these signals exceeds a pre-determined internal threshold value, the neuron

fires a short duration, spike-like electric signal of about 100 mV down its axon toward

the dendrites of its neighbors. The output signal is non-linear in that its strength is

independent of both the threshold value and the integrated value of the inputs. At any ,

given time, a neuron is in one of two states: firing or not firing [21]. However, the rate of

firing may increase in response to sustained excitatory signals. Complications arise given

11 '



the likelihood that a neuron can modify its threshold in response to activity [21] or that a

particular synapse can experience augmentation or diminution of strength relative to

other synapses in a particular neuron [22].

This operation of neurons is a complex and sensitive interaction of chemical and

electrical processes involving a vast number of neurons and other brain cells. Of course it

.1, is not sufficient to model a neuron without also considering its thousands of synapses.

10 14The problem is no longer one of simulating 10 neurons, but also 10 or so

synapses [19]. The huge connection matrix that accompanies each attempt to build a

neural computer has proven to be a major stumbling block and attempts to deal with the

problem have met with varying degrees of success.

B. EARLY NEURAL COMPUTERS

Hawkins [23] mentions three properties of neurons which were generally accepted

by early experimenters in neural computers:

- Synchronous operation,

- Binary operation, and

- Linear, weighted summation of inputs.

Synchronous operation was necessitated by the need to deal with discrete time

intervals both mathematically and in digital computer simulations. Partial justification

was offered that since long neurons transmitted at higher speeds than shorter ones, the

delay time in a given region of the brain tended toward a constant of about 5 msecs.

More recently, however, Peretto and Niez [24] argue for asynchronous neural activity,

since signals arrive at synapses at irregular times.

12
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Binary operation, the all-or-nothing neural firing, has been experimentally observed.-,

and is an easily modeled characteristic, especially on a digital machine. But again,

current research by Hopfield [25] suggests a more useful model is achieved with graded-

response neural units.

Linear weighting of neural inputs provided a simplifying assumption for

mathematical convenience, but SMNI [1-31 shows that a non-linear, non-equilibrium

Lagrangian function more rigorously describes the summation of inputs.

Given the widespread acceptance of these assumptions and the quality of computers -. ':-

available 30 years ago, it is amazing that scientists achieved the results they did.

According to Hawkins [23], Rashevsky was the first to attempt to mathematically

describe biological processes in 1938. McCulloch and Pitts [24] pointed out the utility of

applying Boolean algebra to neural nets in 1943 and developed a neural model that

served as a foundation for much of the early work in the field. Rosenblatt [22] achieved

a high water mark with his work on the perceptron in the late 1950's. ..

Rosenblatt's mathematical perceptron model consists of a network of sensory units,

association units and response units. Sensory units respond to external stimuli by

emitting a signal which is some function of the input energy. The association units

generate output signals if the algebraic sum of the input signals exceed some threshold

value. Finally, the response unit transmits a signal outside the network if the sum of its"-

inputs is positive. "'._

After thorough and exhaustive conceptual work with perceptrons constructed with a

variety of architectures, Rosenblatt reported "With a suitable design and training

procedure, a three-layer series-coupled perceptron can be taught to duplicate the

13
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performance of any finite automaton." Since a finite automaton is considered to be the

* fundamental unit of computation, Rosenblatt in effect claimed that the only limits to the

ability of a network to learn input-output relationships are the size, speed, reliability and

complexity of the network. In 1960, a hardware model of the perceptron featuring a 20 x

20 array of association and response units verified Rosenblatt's network learning

concepts and successfully learned to recognize letters of the alphabet [231.

Minsky and Papert [16] criticized the perceptron, asserting that too little is known of

the human brain to provide justification for any attempt to model it. Considering

Minsky's stature in artificial intelligence, it is little wonder that funding abruptly

disappeared for work in neural networks and neural computers.

C. DEVELOPMENTS IN NEURAL COMPUTERS

According to Hecht-Nielsen [26], the goal of artificial neural systems research is to

create man-made systems that can process the kind of information that brains process.

Examples include

- real-time high-performance pattern recognition,

knowledge processing for inexact knowledge domains, and

fast, accurate control of robotic movement.

He thinks the solution to these problems lies in providing a network of neural units

with the capability to self-adjust their responses to experience. Port [ 11] reports that such

a capability would permit a neural computer to process analog rather than digital signals,

make weighted decisions based on "fuzzy" data, find close matches in large data banks,

and compute fast but approximate answers to time-consuming problems.

14



Neural network simulation is difficult on serial digital computers because of the huge

connection matrix that must be updated with each tick of the system clock. Statistical

sampling techniques can remove some of the computational burden, but only to a limited

degree ff reliability is to be maintained. One solution seems to lie in massive parallel

processing systems such as the Connection Machine [27] and the Transputer. [28]

Another approach has been to make many calculations in the shortest time possible on

supercomputers like Cray-2. Hecht-Nielsen, and IBM's Cruz-Young [26] have designed

parallel processing add-ons for IBM PC's to reduce the expense of neural network

research yet maintain speed and reliability.

The statistical mechanical neural computer (SMNC) provides a tremendous

reduction in computational requirements without an attendant loss in capability through

the introduction of a mesoscopic scaling technique. Although the SMNC is implemented

on a serial digital computer to demonstrate the mesoscopic algorithms, it could be

implemented on a parallel processing system. The combination of parallel processing

and the reduced computational load provided by the mesoscopic scaling algorithms

would provide a real-time neural network system.

I

15 --I,



ZVw

A o

S.A

Ix

- Dendrites

Figure 2.1 A Typical Neuron

a-6



3

MI. THE STATISTICAL MECHANICAL NONLINEAR ALGORITHM

This chapter develops a method for determining long term probability distributions

for nonlinear nonequilibrium systems using a combination of modem statistical

mechanical modeling techniques. The method combines simulated annealing, Monte

Carlo tecbniques and a method for simulating path integrals as developed in a series of

papers dealing with the "Statistical Mechanics of Neocortical Interactions" (SMNI) [1-4].
S

This new method for calculating long term probability distributions has great

3potential in the area of Navy Command Control and Communications (C ) Systems.

Such a system might help to forecast the position of friendly and enemy tanks or ships

given some understanding of the deterministic and stochastic forces that influence their

positioning during battle. For example, some of the factors that might affect the position

of a ship in battle are maximum speed capability, ammunition and fuel capacity,

operational orders, weather, geography and the disposition and activity of enemy ships,

submarines and aircraft. Ingber and Upton have developed a method for examining S

battle scenarios and translating the deterministic and stochastic forces into mathematical

expressions for short-time probability distributions [29].

The algorithm developed in this chapter uses such mathematical expressions, called S

Lagrangians, to generate nonlinear long-time probability distributions. The algorithm %

used throughout the thesis is referred to as the Statistical Mechanical Nonlinear %0
S

Algorithm (SMNA) for convenience.

Combat is a highly stochastic highly nonlinear event in which opponents operate at

extreme rather than average capabilities. Thus a quasi-linear deterministic model of

17
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combat such as Lanchester theory has difficulty modeling any real combat data with any

reasonable degree of precision [30]. The only hope of understanding such a complex

nonlinear system lies in the aggregation of many trajectories in time and space from each

scenario in which one parameter has been varied. The sensitivity of the system to the

change of a parameter can then be quantified and used in decisions involving the use of

the parameter in different combat scenarios. The SMNA provides the capability to

aggregate many trajectories in time and space, and repeated operation with individually

varying parameters can result in truly meaningful decision aids.

A. THE SMNA

The Boltzmann method of rejection test as described by Schulman [31] and
a,",

Metropolis et al [32] is the heart of the statistical mechanics in the SMNA. According to

Landau and Alben [33], who built on the work of Metropolis et al, the state designation

of a system after many cycles may be found by beginning with any state designation and

generating enough successive designations such that the probability of any designation is

given by the Boltzmann distribution. in general, the SMNA engine steps through time

and space assigning values to system varibles at each step. A neural computer as

described in Chapter II is an ideal vehicle for this nonlinear long-time probability

algorithm since each neural unit integrates the effects of its spatial and temporal
neighbors as it sets the values of its variables.

Consider a situation in which the initial value of a variable q and a mathematical

description of the short-term probability distribution for temporal or spatial

displacements of q are known. According to Haken [5], such situations arise in diverse

areas of study such as chemistry, mechanics, optics, fluid dynamics, biology and

18
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economics. A variable's short-time probability distribution may be found readily for

adjacent temporal cells. However, long-time probability distributions can frequently be
I

found only through solution of Fokker-Planck equations or their representation as path

integrals. These path integrals are derived from a system of stochastic rate equations

referred to as Langevin equations [5]. Exact solution of these equations can often be

difficult to achieve in any but the simplest of systems.

The SMNA can be used to determine the approximate long-term probability

distribution of q after time t. This is accomplished by calculating many trajectories that

q might follow through space and time, and examining the aggregated values of q after

the simulation of these many trajectories. An aggregation of the final values of q will

reveal the form of a long-time probability distribution from the short-time function under

examination. This process is discussed for the case of a single variable occupying a

single spatial grid cell, but cycling from time to to time t in steps of size At.
"0.

In the case of a such a single variable system that varies in time but not in space, the

Boltzmann probability distribution can be written as

-1/2 -LAt
P =(2ncQ(t-At)At) e (3.1)

where

(q (t)-q (t -At )-K (t-At)At )2

L ,(3.2)
2Q (t-At)At 2

and K (t -At) is the drift force and Q (t -At) is the diffusion coefficient. K and Q may be

highly nonlinear functions of q. If L is a function of one variable, say q, then it is a

function of both q(t) and q(t+At). These variables can be referred to as q and q'.

19
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If the value of q is determined for each time t. as s is incremented from 0 to N,

where N = t /At, it may be plotted versus t to represent a trajectory through time.

Assuming that q is known for all time steps s in the previous trajectory (n-1) and that

L (q ,q',t) is known for the current trajectory, n, then L (q ,q ',t+At) may be found for

trajectory n. In order to find L (q ,q ',t +At) for trajectory n, a value for q' must be

selected and used to calculate a trial value for L (q ,q',t+At). A stochastic process is used

to sample the space and select a value for q' and the Boltzmann method ensures that only

likely values of q' are accepted as q 's and unlikely values are rejected.

The Cauchy routine described in Appendix A is called with q from trajectory n -I as

the mean and an experimentally determined value for the temperature. The use of the

Cauchy routine with a variable temperature provides an effect similar to the "fast" p

sinulated annealing process described by Szu [34]. The Cauchy routine samples the p

variable space "near" the value of q in the previous trajectory, but the "fat tail" of the

Cauchy distribution ensures that the entire space is sampled, and if multiple system

minima exist, they can be found. This use of the Cauchy routine differs from traditional

Monte Carlo methods which only sample the variable space in a very narrow, uniformly

distributed band centered on the value of q in the previous trajectory.

b-e

The value q' returned by the Cauchy routine is entered in Eq. 3.2 for trajectory n,

time steps s and s+l. Then DL is determined from

DL =L ((s+1) At)+L (s At)-L _((s+1) At) -L (s At). (3.3)

Only qn t(s At) is changed to q',(s At). Again, the subscript n indicates trajectory and

subscript s indicates time step within the trajectory. Thus, DL describes a perturbation

of the entire (n-l)th trajectory at time (sAt). This is done for all s.

20
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DL is now used as a basis for the acceptance or rejection of q'. A random variant x,

uniformly distributed on (0,1), is generated and if

(-DLX&)
x<e (3.4)

then q' becomes q for trajectory n step s.; The process is repeated until time t is reached

when the value of q is captured and plotted on a histogram. After a large number of

trajectories, the histogram may be examined to reveal the long-term probability

distribution of the functions under examination.

This procedure may be further generalized to represent systems in which the value of

a variable is influenced by variables in neighboring spatial cells and systems of more than

one variable. The Statistical Mechanical Neural Computer (SMNC) described in Chapter

IV describes the potential use of the SMNA on a system of two variables and 1089

spatial cells. The JANUS tank battle simulation is a two variable system involving a

small spatial grid of 9 cells. The SMNA is sufficiently general to possess applications in

many areas such as nuclear physics, neurobiology, chemistry, metallurgy, economics and
military C3.

The multivariable multicellular Lagrangian as described by Ingber [35] forms the

basis of the SMNC equations of Chapter IV.

B. VERIFICATION OF THE SMNA

Appendix A discusses in detail the steps taken to ensure that the stochastic routines

for the SMNA were properly written and that the algorithms performed as expected.
.0a

" Verification of the overall operation of the algorithm is difficult since, in complex

nonlinear cases, the long term probability distributions cannot be determined empirically.
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Without an empirical "right answer" against which to measure the SMNA no verification

is possible.

Wehner and Wolfer faced a similar problem with their path-integral method for

finding long term solutions to various distributions [6]. They verified their method of

evaluating path integral solutions to Fokker-Planck equations by trying it on relatively

simple nonlinear functions whose solutions are known. To verify the efficacy of the

SMNA, it was used to reproduce the results achieved by Wehner and Wolfer.

Initially, they chose a Lagrangian function used in the Rayleigh gas model of a dilute

concentration of heavy atoms in a gas of light atoms [6]. The Fokker-Planck equations

representing this system has a drift force K (q) =-q +3/2 and a diffusion coefficient

Q = q. The long term solution is known to be

tr2

P (q ,t) =12 e expl exp (3.6)

27cq 0(1 - e

where

2 I

[q !(qoe-t)l/

expl =(3.6a)
expL

1e

and

A 2

exp2 = (3.6b)
1-

I-e
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Wehner and Wolfer's results are plotted in Figure 3.1a with qo = 7.0 t = 0.5 minutes,

and At=0.1 min. The SMNA solution is plotted in Figure 3.1b with At=0.5 min. and all

other parameters the same as Wehner and Wolfer's. Figures 3.2a and 3.2b show a

similar comparison of results for time t = 5.0 minutes. The similarities between the two
.,

plots provides verification of the SMNC's ability to predict coarse grained long term

probability distributions in the case of a relatively simple nonlinear function.

The SMNA finds a long term probability distribution that is similar to the exact

solution but has done it in a manner that is simple enough to be implemented on a

micro-computer yet general enough to be used in a variety of situations. This method is

a variation of the traditional Monte Carlo method of Metropolis et al [32] with an added -'

feature of using the Cauchy distribution, instead of a uniform distribution over a small

range, to deal with nonlinear problems. The SMNA produces a solution with somewhat

lower resolution than the Wehner and Wolfer method, but the solution was achieved in a

manner of minutes on a VAX 11/785 and only required enough memory to support a

one-dimensional data array of 3 floating point numbers in each element and N elements

where N = t/At.

After reasonable success with a simple equation, the algorithm method was tested on

a more complicated Fokker-Planck equation representing a bifurcating solution. Here

K(q) =tanhq and q =1. The long-time solution is

sethq°)_t/2 "(1/2t Xq-qo £'

P (q,t)= e e cosh(q). (3.7)
(2tt)1/2
(2i,-)

Figure 3.3a shows the Wehner and Wolfer results for t =10 min, At =0.1 min. and q =

0.0. Figure 3.3b plots SMNA results with At = 1.0 min. Figures 3.4a and 3.4b are the
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results of setting q 0 = 0.6 and dramatically illustrate the SMNA's sensitivity to initial

conditions. The only concession to the bifurcation was the necessity to repeat the

initialization process at intervals during the collection of data.

This exercise in reproducing Wehner and Wolfer's results from path-integral

calculations with an entirely different approach using statistical mechanics provided

confirmation that the SMNA is fully capable of finding long-time nonlinear probability

distributions quickly and with a reasonable degree of resolution.

C. VARIATION OF PARAMETERS

During experimentation with the SMNA it became obvious that the algorithm was

sensitive to many different program parameters. Appropriate values were chosen for

each parameter based upon educated guesses, experimentation and mathematical

d, deduction. The limited time and computer resources available to this research project

combined to prohibit a proper sensitivity analysis of each parameter and its effect upon

the operation of the algorithm, but over the course of literally hundreds of runs of the

SMNA, a good guage for these parameters was developed. The following paragraphs

*' describe, in general terms, the influence of these parameters.

The number of trajectories. The resolution of the graphic presentation of the data is

inherently coarse since data points are represented by ASCII characters 1/10 inch wide

and 1/6 inch high. However, the output plots were discovered to be unacceptably coarse

when less than 10,000 trajectories were plotted. No improvement in resolution was noted

above about 20,000 trajectories and consequently, 20,000 was used for the final runs.
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The size of At. The mesh size At represents the size of each time slice in the
'5.

integration process. In the discrete mathematics, a smaller At generally means increased

accuracy and longer run times. The SMNA generally worked well when At was chosen ,'

to be about 1/Lx where L.,rk was the value of the Lagrangian with the q" term set to

zero, that is, Ls. =K 212Q. In the Rayleigh Gas case At =0.5 min. and in the

bifurcating process, At =1.0 min.

Cauchy temperature. The "temperature", or in a sense the variance, of the Cauchy

routine had an effect on both the form of the results and the efficiency of the program.

When the temperature was too high, many unsuitable values for q' were submitted for

acceptance and then rejected, thereby slowing down the operation of the code. On the

other hand, too narrow a temperature range produced a situation that failed to sample the

entire variable space and consequently missed the location of the some of the multiple

minima which occur in nonlinear systems. The temperature was chosen to be

approximately the amount that q might reasonably be expected to change from one

trajectory to the next. During the validation runs, the temperature was set to 1.0. " -

Warmup length. As the code begins operating, an initial trajectory is required. This

trajectory can almost be chosen arbitrarily. The initial trajectory used was found by

setting each q to the value of the initial conditions and then cycling through the code for

several thousand cycles. This resulting trajectory represents a more "likely" trajectory

than one composed of identical values of q and it serves as a suitable starting point for

the SMNA code. The validation runs were "warmed up" by cycling the initial value

trajectory through 2000 cycles, an amount determined though experimentation.

25
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Warmup repetition. In order to achieve bifurcation within a reasonable number of

runs, the trajectory initialization and warmup process was repeated every 1000 cycles. N
This reinitialization served to shortcut the stochastic nature of the SMNA by, in effect,

reseeding the random number generator.
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Figure 3.2a Wehner and Wolfer Plot of Rayleigh Gas System, t = 5.0 min.
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Figure 3.2b SMNA Plot of Rayleigh Gas System, t = 5.0 min.
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IV. SMNC THEORY OF OPERATION

This chapter discusses the principles behind the operation of the two scales of the

Statistical Mechanical Neural Computer (SMNC). One computer operates at the

mesoscopic or middle scale and takes advantage of two statistical mechanical shortcuts

5
that permit modeling of a neural computer consisting of 10 units. The other computer

operates at the microscopic level and simulates a fully connected network of about 550

neural units. The microscopic network serves as a control and feedback mechanism for

the more interesting mesoscopic computer.

The SMNC is modeled as closely as possible after the neocortex region of the human

brain since much is known of that part of the brain. This modeling of the neocortex

demonstrates the Statistical Mechanical Nonlinear Algorithm (SMNA) on the highly

nonlinear multivariable multicellular system. The use of the SMNA and nearest

neighbor algorithms highlights their utility in reducing the computational load normally

associated with a neural computer. It also shows how the mesoscopic scale can be used

to serve as an efficient filter between the microscopic and macroscopic scales.

A. TERMINOLOGY AND NOTATION

3
Since much of the important work of this thesis lies in C applications, a general

terminology and notation scheme is used and references to neurons, axons, dendrites and

the like are severely limited. The neuron and synapse, the two chief entities in any model

Substantial portions of this chapter were published as: Connell, J., L. Ingber and C. Yost, "A statisu-
cal mechanical virtual neural computer and C3 Applications" In Symposium on C3 Research. National De-
fense University, Washington, DC. 1987.
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of the brain are called unit and link in this thesis. In general, this chapter will follow the

same notation conventions and use the same terminology as developed in a series of

papers dealing with "Statistical Mechanics of Neocortical Interactions" (SMNI) [1-4].

B. THE MACROSCOPIC SCALE
Th ua riot in ° 3

The human brain contains 10 neurons, and a model this large is impossible with

today's technology. However, there are natural groupings of about 105 neurons in the

neocortex that provide natural units for neural modeling. SMNI divides the neocortex

5 9 2
into such groups of 10 units in an area of about 5xl09 t .m and calls them

macrocolumns [2]. The physical placement of units within a macrocolumn with respect

to one another is unimportant in this simulation; they may reside in a flat circle, in a

sphere, or along a convoluted ribbon. However, the functional relationship of one unit to

another is significant and must be preserved in the model. There is no notation

convention unique to the macroscopic scale.

The mesoscopic SMNC models just one macrocolumn of 105 individual units.

Although a macrocolumn is a small portion of the total human brain, its potential is

staggering when compared with the number of units typically found in neural computers.

C. THE MICROSCOPIC SCALE

The microscopic scale is the level at which an individual unit communicates with its

neighbors. Traditional neural net computers only consider interactions at this

microscopic level. However, in the SMNC, the determination of individual unit firing

states at the microscopic level is done in parallel with operations at the middle or

mesoscopic scale. The microscopic level is used in the SMNC to:
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- provide a frame of reference to the mesoscopic domain,

- demonstrate the influence of "commands" from the macroscopic level,

send feedback to the mesoscopic level, and

serve as a mechanism for adjusting mesoscopic parameters.

1. Microscopic Parameters and Variables

The parameters AJ. BJk.Vik *jk and V. are used in the calculation of

probability distributions which in turn determine the state of an individual unit's single

variable a,. The subscripting convention has parameters related to individual units -*

subscripted with j, where j ranges from I to 10 , the number of units in a macrocolumn. .- ,

A link and other parameters arising from an interconnection between a receiving unit j S

and a sending unit k are subscripted jk. The subscript k has the same range as j, but

j~k.
4S

A unit will form about 10 incoming, or afferent links with other units in its

macrocolumn. In other words, a unit receives messages from =I0% of its neighboring

units and when it fires, it transmits to =10% of the units in the macrocolumn. The S

afferent signals received during the relaxation time r, are summed by the unit. The

results of the summation, p, are compared with the unit's threshold potential V, and the

unit most likely fires if V. is exceeded. In the case of firing, the variable oy is set to 1,

otherwise it is -1. The method of rejection test is used to determine whether or not a unit

fires based on this comparison between p and V.

Two classes of units are required for the brain simulation: inhibitory (I) and

excitatory (E). Inhibitory units send negative signals that discourage a unit from firing

and excitatory units send positive signals. Since there are two classes of units, there are

33

%



four possible combinations of link interactions: E-E, E-1, I-I and I-E. Several of the

microscopic parameters are sensitive to these combinations.

The parameter vjk is the net electrical potential at the link between two units k

. and j during the firing of a signal from k to j. This potential is on the order of 0.1 mV

and is positive if the signal was sent by an excitatory unit and negative if sent by an

inhibitory unit. 4 j is a parameter representing the statistical variance of this electrical

potential.

A unit j assigns a weighting factors to each of its afferent links. This link

weighting factor is denoted AAk, and it may differ for each jk connection. The remaining

parameter in the microscopic scale is B A which represents a random background noise

factor which may differ for each jk link.

2. Microscopic Interactions

The firing of unit j is denoted by the state of the variable 1 ; ay =I if] fires and

=-I if it does not. ; can be determined from a probability distribution p0 which is

derived by SMNI in [2].

e
P =-i (4.1)

F, -Fj
e +e

where

V.-Y(a vk)

k

F.=(4.2),-
Fj =2 2 1/2(42

k

and
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ak = Ak (Ok1+)+Bk (4.3)
2

summing over all the sending units k for each of the receiving units j. Once the SMNC -,

calculates p,0 , a. is determined by the Boltzmann method of rejection as described in

Appendix A [36].

3. Microscopic Parametric Values

Both vik and Ojk are on the order of 0.1 mV and are found by calls to a Gaussian

variant generating procedure. This procedure accepts a mean and a variance as input

parameters and returns a variant with the properties of a Gaussian distribution. ijk s

computed first with a mean of 0.1 and variance of 0.015. Vik is then computed using 0.1

as mean and jk as variance. Only positive numbers are initially accepted from the

Gaussian procedure, but for inhibitory firings, I-E or I-I interactions, v is multiplied by

-Ito represent the negative potential.

Figure 4.1 contains values for the weighting factors A jk and background noise

factors Bk. These parameters vary according to the excitatoryfinhibitory (E,I) class

identity of the sending and receiving units. The values in Figure 4.1 are found through

statistical averaging techniques [2] at the mesoscopic scale discussed in the next section.

Since the numbers in Figure 4.1a are mesoscopically scaled averages, they may not be

directly substituted for Ajk and Bs . These values are used as entering arguments to the

Gaussian procedure to produce A ik and BJk values with correct distribution properties.
I

V. represents a unit's threshold potential and serves as the yardstick against

which the summation of signals is measured. A value for V is found with a call to the
j .s.

Gaussian generator using 10.0 mV as the mean input parameter and 1.5 as the variance.
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In some areas of the brain, such as the cerebellum, the afferent and efferent

interconnections are rigidly structured. However, in the neocortex, random processes

determine both the number of connections and the specific neurons with which

connections are established. In the SMNC, as in the brain, units establish links with

about 10% of their neighbors. Whether or not a link exists between two units is

, determined in the initialization phase by calls to a uniform random number generator.

About 65% of the units in the brain model are excitatory. A call to a uniform

random number generator initially establishes each unit as either excitatory or inhibitory,

but the dynamic simulation permits units to change orientation as the simulation

progresses.

4,. The relaxation time r is 5 to 10 msec in the neocortex. The SMNC operates

- synchronously with each cycle equal to At : 5, although the neocortex almost certainly

operates asynchronously. This can be justified by considering the following thought

experiment: Suppose 100 people per hour pass a wishing well and 10% of the passersby -'

throw in a coin. Surely the arrival of a coin in the well is asynchronous, but over the

time span of a day or week, it could be said that about 10 coins arrived each hour. Thus

nonsimultaneous microscopic events can be treated as simultaneous at the mesoscopic

scale since they occur during the same time interval [36].

D. THE MESOSCOPIC SCALE

Haken [5] points out the need for a mesoscopic scale in nonequilibrium systems to

formulate the statistical mechanics of the microscopic system. This formulation will

permit development of the macroscopic scale and provide a means of filtering

microscopic interactions as well as a channel for issuing "orders" in a C3 application.
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Further, the use of the SMNA and mesoscopic scaling dramatically reduces the

computational burden traditionally associated with neural computers.
S

1. Mesoscopic Parameters and Variables

A minicolumn is a group of about 110 units which forms the basis for

mesoscopic scaling. These groupings have been observed in the neocortex [37] and p

provide the key to the success of the SMNC. The parameters of the mesoscopic scale are

G' G' G'

VG , AG, and BG which are minicolumnar-averaged synaptic parameters. The

terminology used in the mesoscopic development is similar to that used for microscopic

interactions.

The most significant difference in notation at the mesoscopic level is the use of S

superscript or subscript G where G = E or!. Recalling that 65% of the 110 units in a

minicolumn are excitatory, E may range in value from -80 to +80 and I may range from

-30 to +30. A parameter with a single superscript G shows a summation over the E's P.-

and I 's. A parameter with a superscript G and a subscript G' like A, suggests a similar

summation process over both the sending minicolumns, G', and the receiving

GEminicolumns G. The variables of this system are M representing the two variables ME

I Eand M . Thus, M contains information revealing how many of the excitatory units in a

minicolumn fired during one time step. If the total number of excitatory units in the

minicolumn is known, then the number of units that did not fire during the time step may

be found easily.

The mesocolumns are functional groups closely associated with minicolumns.

Conceptually, a mesocolumn represents an afferent minicolumn and an efferent .

macrocolumn; it is a statistical treatment of the signals sent and received by the 110 units
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in a minicolumn. Since a macrocolumn contains about 10 units arranged in

3minicolumns, there are about 10 mesocolumns in each macrocolumn.

SMNI shows that it is not necessary to model every mesocolumn's interactions

with every other mesocolumn [2]. The mesoscopic probability distribution can be found

by computing the influence of a mesocolumn's four nearest neighbors rather than the

=103 other mesocolumns in the macrocolumn. In effect, a summation of about 4000
% 6 10% complex calculations replaces a summation of the 10 to 10 simpler computations

required to model 10 units and the resulting interconnection matrix in a more traditional

neural computer.
'p.a

2. Mesoscopic Interactionsdo-,

The calculations necessary to produce a probability distribution representing the

firing state of a minicolumn are more complex than those used for microscopic

interactions and require the use of the Statistical Mechanical Nonlinear Algorithm

(SMNA). SMNI establishes a mesoscopic Lagrangian L, representing the nonlinear

short-time system probabilities [2]. The long-time, two variable probability distribution

for the neocortical parameters is
a.-

1 12 -NAtL
P= -g e (4.4)

2tAt

Where

E I
L=L +L (4.5a)

This Lagrangian is the key to SMNA and thereby the SMNC. The Lagrangian

G
L , where G = E or !, is calculated using
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*G (*G' G G c.-
(M -g )gGG" - g ) MG( 

)L+ (4.5b)

2N 2N'c
where I

.GrG G 2 46Me IM (t +A)-M (t /At . (4.6)

G
The function g in (4.5b) is equivalent to the drift factor, K (q) from the single

GO'variable case discussed in Chapter II, and g is the equivalent of Q (q), or the

diffusion.
I

g =det (gGG ') (4.7)

GG' -1 -1 2 GG'
g (gG) =r -N sech F 6 (4.8)

G|
g function is found to be

g G--T- (MG + N tanhF ). (4.9)

G GO'
It is now possible to produce values for g and g with the value of the intermediate

variables F from

- 'a ,vv N  - y(1/2)A ,v :MG]

F= (4.10)
G 2 G 2 G G' G ' %

[ x[(v G ) + (0 a ) ](a ,N + ( 1/2 )A ,M ] 

-

G'

where

GG Ga -(1/2)A + B ,  
(4.11)",
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3. Mesoscopic Parametric Values
G G

4 AG, and BG, are minicolumnar averaged link efficacies and background noise,

respectively, and since they are already mesoscopic columnar averages, they can be

G
taken directly from Figure 4.2 [2]. In the case of the B values, a further modification is

required before useful values can be entered into the SMNC, that is, the centering

mechanism which is discussed in Appendix C must be applied. After this simple
G

modification has been made to the BG, values, the weighting and background noise

parameters are ready for use.
Gv., represents minicolumnar averaged contributions to link electric

polarization. va , is the mean and the variance is 0 G'. The number of parameters may be

reduced using vG, = v =0.1mV and G= 40 =0.1mV without significantly altering the

conclusions of the model [2].

The Lagrange multipliers JG are used to represent input from interactions

outside the macrocolumn. Suitable values for this parameter must be determined

experimentally for each application. In the single cellular case, JG is set equal to zero.
The equation for the mesocolumnar weighting function V' is

G G'2 
=, YV" ,(pVMG( (4.12)

G

where p is the spatial extent of the mesocolumn (about 0.1 mm). This equation resulted

from the nearest-neighbor approximation discussed earlier, but its derivation and

computer implementation are beyond the scope of this work [2]. In the SMNC, V G'

values are set to zero since the influence of neighboring units is not felt in the single

spatial cell case.
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4. Mesoscopic Variables

Equation 4.4 contains N=110, the number of units in a mesocolumn and, r, the

mesoscopic relaxation time which is of the same order as the individual unit relaxation

time T--5-10 msec. As in the microscopic case, the mesoscopic interactions are modeled

synchronously with At <5t.

EM is the number of excitatory firing units in the mesocolumn and M is the

Gnumber of inhibitory firing units. During the operation of the SMNC, M (t+At) will be

Gcalculated by the SMNA using the value of M (c) from the previous iteration of the

SMNC. Trial values for these parameters are found by a call to a Cauchy random

number generator [36] as in the single variable cases discussed in Chapter III. The

Cauchy distribution was chosen because it is a less sharply peaked distribution than the

Gaussian and has a fatter tail, that is, the distribution includes "outliers" far from the

mean. This feature of the Cauchy distribution ensures that the entire sample space is S

sampled and all minima can be found. M (t+At) is centered around M (T), but we must

allow for values of M(,t+At) that fall far from M(-r). Szu [38] discusses the use of a .

Cauchy distribution in similar circumstances with respect to simulated annealing and the

Lagrangian function.

GThe Cauchy generator returns a set of variables M which are input as test

values to the set of equations 4.4 - 4.12. A test P is calculated and the Boltzmann

method of rejection (discussed in Chapter M) is applied. .. -
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Cmbintio Aj B A -~W - - *w.- -

A Jot

E-E 0.005 0.001
E-I 0.01 0.002
1-I 0.001 0.002
I-E 0.01 0.002

Figure 4.1 Microscopic Weighting And Background Noise

G GCombination A B

E-E 5.0 1.0
E-I 10.0 2.0
1-I 1.0 2.0
I-E 10.0 2.0

Figure 4.2 Mesoscopic Weighting And Background Noise
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V. CONCLUSIONS AND RECOMMENDATIONS

This thesis research is part of a larger ongoing research effort headed by Professor "'

Ingber at the Naval Postgraduate School. The chief contribution of this thesis has been to

validate the statistical mechanical neural algorithm (SMNA) and develop the statistical p

mechanical neural computer (SMNC) built around the algorithm. This validation of the

SMNA has prompted other researchers to encode the algorithm in the Fortran ..K

programming language and extend it to two and more variablcs and begin

experimentation with simulations of the neocortex region of the brain and tank battles.

Although the results of this thesis are interesting in their own right, their full potential

cannot be understood or appreciated outside the framework of the overall research effort.

A. THE NEURAL COMPUTER

Chapter II contained a review of the history of neural computers and the current state

of research in the field. From this review, it is apparent that neural computers have the

potential for significant contributions in many different areas of study. Their ability to

perform many simple calculations in parallel gives them the capability to find quick

approximate solutions to many problems that require tremendous amounts of digital

computer resources. Pattern recognition, artificial intelligence, large data base searching,

analog signal processing and decision making based on incomplete data are all

capabilities that have been attributed to neural computers [11]. Unfortunately, neural

computing systems have been limited by their ability to manipulate the huge connection

matrix that must exist to interconnect the individual computing units.
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The SMNA has the demonstrated ability to produce long-time nonlinear probability

distributions in systems of one variable and researchers are currently experimenting with

extensions of the algorithm to systems of two and more variables. The statistical

mechanical neural computer is capable of integrating the effects of adjacent temporal and

spatial cells on the state of system variables through utilization of the SMNA and two

statistical mechanical shortcuts discussed in Chapter IV. These shortcuts are the
i2

aggregation of about 102 individual units into mesocolumns, and the use of the nearest -

neighbor algorithm. These two concepts permit the SMNC to simulate the effects of a
-5'

neural computer with about 10 as many calculations as normally would be required and

overcome the chief limitation of neural computers.

B. THE SMNA
",*

The statistical mechanical neural algorithm is a Cauchy-driven Monte Carlo

calculation of the path integral solution to nonlinear Fokker-Planck equations. It

provides a coarse grained approximation of the long-time probability distribution of
.4-.

highly complex nonlinear systems quickly and in a very memory efficient manner.

Chapter III discussed the validation of the SMNA through duplication of the results
J.

achieved by Wehner and Wolfer [61 on two different systems of single variable nonlinear

equations. Particularly noteworthy was the SMNA's ability to find the two "minima" in

the case of the bifurcating function and it's sensitivity to a change in initial conditions

form 0.0 to 0.6 in the Rayleigh gas model. The SMNA results are coarse and have poor

resolution, but this does not detract from their utility. There are many scenarios in which

a commander would benefit from a quick, calculation that shows the future effect of how

the variation of a force parameter affects the outcome of a battle.
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The efficient use of memory is one of the chief benefits of the SMNA. The most

significant memory requirement is an array that stores the values of the variables and the
I

values of K (q) and Q (q). This array need only contain as many elements as N where

N =t/At; At is the size of the time slice and t is the length of time the SMNA is to

simulate. -

Since the SMNA is memory efficient, it can easily be used on a machine with the

capabilities of an IBM PC-AT microcomputer. In such an application, the Lagrangians

would be computed in advance using Ingber and Upton's technique and stored on disk.

The system operator would select the appropriate Lagrangian or weighted sum of

Lagrangians to fit the scenario at hand. The SMNA would then quickly display the

projected outcome of the battle based upon initial conditions entered interactively by the

operator. Thus, the battlefield commander can have a valuable decision aid that can

predict the long term consequences of his decisions regarding the combat parameters

under his control.

C. THE SMNC

Due to time limitations, research was not completed on the SMNC; however, several

successful runs were completed on the neocortex parameters described in Chapter IV. In

one of these preliminary runs, the SMNC was operated in the single cell mode to validate

the operation of the SMNA on the neocortex parameters. The objective was to reproduce

Ingber's results [2] as shown in Figure 5.1a in which system minima are found for the "

E I
Lagrangian L using M and M as system variables. Figure 5.1b depicts the SMNC's

ability to approximate those results.
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Another preliminary attempt to operate the 1089-cell two variable neocortex

simulation was conducted on the NASA Ames Research Center's VAX 8800

supercomputer. The computer required approximately 88 minutes of CPU time to

initialize the variables in the 1089 mesocolumnar cells and the 550 microscopic scale

cells and their attendant interconnection matrices. The vast majority of the CPU time

was used in initializing the microscopic scale which was designed to act as feedback and

control for the mesoscopic scale. Unfortunately, delays in debugging the SMNA

algorithm precluded further operational runs of the SMNC on the neocortex simulation.

This combination of an efficient engine, that is, the SMNC driving the SMNA offers

tremendous potential for quick approximate solutions to many different large scale

complex nonlinear systems. Systems that may eventually benefit from this approach are

military systems, thermodynamics, fluid dynamics, quantum mechanics,

neurobiology, lasers and perhaps even economic and political systems.

D. RECOMMENDATIONS FOR FURTHER RESEARCH

This thesis research represents one small brick in the foundation of the SMNI

research project being conducted at NPS under the guidance of Professor Ingber. Many

tantalizing and potentially fruitful topics have been discovered during the course of this

work and others researchers have already begun to consider them. The paragraphs that

follow touch on some of the more interesting topics that were discovered.

1. The Neocortex Simulation

The original intention of this research was to fully explore the SMNC's ability

to approximate the results of a fully connected neural network 139]. A reasonable effort

to complete the debugging of the SMNC neocortex code and perform experimental runs
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would produce answers to questions such as:

- How well does the mesoscopic scale approximate the microscopic scale?

- Can the SMNC be used to study the short-term memory phenomena?

5 W- How much can the simulated 10 cell network learn? %,%

- How are learned patterns stored in a neural computer?

- Can the mesoscopic scale effectively filter the microscopic data?

- How do externally applied "commands" effect individual cells? S

- Can the SMNC recognize learned patterns?

2An operating simulation of the neocortex that represents about 1 mm of the

brain offers exciting potential for serious research applications in the field of

neurobiology. Once the simulation is validated perhaps by reproducing the short-term

memory phenomena, the system could be used to perform sensitivity analysis of the

effect that various chemical or electrical conditions might have on the mind.

2. JANUS

In his NPS Master's thesis, Upton [7] demonstrated the capability of fitting

Lagrangians to data from a simple land battle scenario modeled by the JANUS computer

simulation of combat developed at Lawrence Livermore National Laboratory [40,411.

He analyzed data from 20 JANUS battles and was able to fit the data to a Lagrangian

equation of two variables. This represents the first time a complex nonlinear

mathematical expression of probability has been derived from combat data.

Upton produced short-time probability distributions directly from data, and his

technique is equally valid for data from computer simulations and actual combat data.
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He chose a simple JANUS scenario in which two forces, Red and Blue, battled on a

featureless terrain, and the variables of interest are merely the numbers of units in each

force after the battle. However, the procedures used by both Upton and the SMNA will
J'.

prove to be useful for scenarios of arbitrary complexity.

Ingber has coded several candidate Lagrangians into the SMNC and begun

experimenting with the tank battle simulation. Further research with the SMNC

operating on a multicellular terrain grid with the Lagrangian derived from JANUS data

could produce answers to questions like:

What effect do individual weapons performance parameters have on the outcome of
battles?

How similar in form are Lagrangians from computer simulations to Lagrangians
that are derived from actual combat data?

How valid are JANUS and other computer simulations?

- What is the effect of initial conditions on the outcome of battles?

.41 - What is the effect of terrain on battles?

- Can the SMNC recognize an unfolding scenario and "anticipate" the likely enemy
actions?

If tank battle simulations are interesting then surely simulated battles at sea are

worthy of study, for example, outer air battles engaged in defense of a battle group. The

process of fitting Lagrangians to data is one which could easily be adapted to war at sea

scenarios. Such data could be found in war game centers, actual fleet exercise reports, or

computer simulations. Once the Lagrangians are available, the SMNC can bring its

potential to bear on an entirely new set of questions pertinent to the Navy.
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3. The Battle Manager

One future potential use for the SMNC is the computerized battle manager.

Such a battle manager uses the SMNC to filter the tremendous volume of data that occurs

during battle to isolate patterns. The manager next compares the unfolding scenario with

its memory of stored Lagrangians to determine whether it recognizes the scenario. If no

recognition occurs, the battle manager will synthesize a Lagrangian from a weighted sum

of such equations in memory.

Once the battle manager selects or computes the correct Lagrangian it will run a

series of trajectories and examine the long-time probability distributions to anticipate the

probable outcome of the battle. Given the added capability that parallel processing

would bring to the SMNC, many trajectories and many variables could be examined in

near real-time to find out what the future effect of a command decision might be. The

human commander would assess the probabilities displayed by the battle manager and

make his battle decisions accordingly.
3

Another potential C application for the SMNC is its applicability as a force

selection and weapons procurement decision aid. Procurement decisions would be based

on the kind of sensitivity analysis that the SMNC could perform by individually

examining each weapon parameter and variable in realistic combat scenarios. The use of

the SMNC as part of such a decision aid could help ensure the maximum mix of weapons

capabilities would always be available.
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Figure 5.1a Ingber's FIG 2(b) Plot of L values < 0.04 [2]

Figure 5. l b SIMNC Plot of L values < 0.04
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APPENDIX A: STOCHASTIC ROUTINES

All of the stochastic procedures call get randf which returns a "shuffled" pseudo

random floating point number uniformly distributed between 0.0 and 1.0. When first

called, getrandf repeatedly calls a built-in random number generator which returns

- integers between 0 and 231 -1 (the maximum integer for the VAX 11/785). The

-', get randf procedure as shown in Figure A.1 converts the integers to floating point

numbers and stores them in 256 different bins. When get randf is called subsequently,

- it randomly selects a bin, returns the floating point number found there, and then refills

*' the bin with a new variant. This "shuffling" technique provides an additional layer of

' protection against repeating sequences of numbers which might tend to lock the SMNC

,. into artificially induced patterns of operation. This study could not afford the time to

exhaustively test the "randomness" of variants returned by get randf; however one

simple test was performed in which a large number (100,000) of get randf generated

variants were analyzed to find their mean and variance. Using ten runs with different

initial random number seeds, get randf was found to produce variants with a mean of

0.5001 and a variance of 0.0001 which was as expected.

Uniform, shown in Figure A.2, returns uniformly distributed pseudo random integers

within a range selected in the calling routine; it makes use of the shuffling provided by

getrand". The Gaussian procedure shown in Figure A.3 was taken from Fishman [421

and follows textbook techniques for generating Gaussian variants from uniform variants. .
.1"

The Gaussian procedure was tested by comparing the mean and variance of 100,000

variants generated by gauss with the entering mean and variance arguments. After 10
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runs using different random number seeds, the difference between the entering arguments

and resulting means and variances was found to be on the order of 0.0001 The runs

were repeated for means of 0.001, 0.01, 0.1, 1.0 and 10.0. In each case a variance of

15% of the mean was used. Histograms of standardized variants were also examined to

ensure that gauss returned variants possessing the classic "bell shaped" curve.

The most useful property of the Cauchy distribution for SMNC is the fact that the

Cauchy distribution requires +.* for the upper and lower limits of variants. The testing of

cauchy, shown in Figure A.4, involved the use of a series of histograms of standardized

variants generated by repeated calls to cauchy with different entering median and

temperature arguments. The histograms possessed the correct shapes and included

variants far from the median as required of this distribution.

.. 5
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floatget-andf

stati int.flag

stti fla.4-nSUFL]
unsigne int i

fla randfo

stac 1tfa;
saticx flad %nISHUFFLE;

ret rnm=fe inrn;e]
flotmret_num;
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float unifonn~lowjbound. hLbound)
float low_bound, hi bound; -

return(low...bound + (hibound - low..bound) *getrandfo);

Figure A.2 Uniform()

Bltkw. gatss(mu, var)
float mu, var,

double expo, sqrto, logo; -

float getrandfo;
return( mu + sqrz( -2 * var * og(geLrandfo))*
cos(2 *PI geLrandfo));

Figure A.3 Gauss()

fla cuhpmda, ep

float meanhtmp;, ep

float getjandfo;
return(temp *tan(PI*(ge~randfo - 0.5)) + median);

Figure A.4 Cauchy()
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APPENDIX B: SINGLE VARIABLE CODE

The three functions in Figure B. 1 are self explanatory. In a single variable problem,

GetK( ) and GetQ( ) must be modified to reflect the functional form of the new

Lagrangian. In a problem with two or more variables, these functions must return the

elements of a matrix, the size of which is determined by the number of variables. For

example, in a two variable problem such as the neocortex model, Get K( ) becomes two

functions, GetKE( ) and Get_KI() and Get_Q() becomes Get QE() and GetQI().

Although the code becomes somewhat more complicated, the algorithm is unchanged

and effective for an arbitrary number of variables. The number of variables has no effect

beyond the GetL( ) procedures with the exception of displaying the results.

As discussed in Chapter I, the initialization procedure sets the q0 's along the zeroth

trajectory to some initial value and then performs a warmup of several thousand cycles to S

produce a "likely" initial trajectory. This likely trajectory then becomes the initial

trajectory for the subsequent update cycles. Figure B.2 shows the Init( ) procedure in

which the value of the constant INIT is entered for q0 . Init( ) also computes and stores

values for K(qo) and Q (qo) for later use. In a two variable problem, four values are

stored; KG (qo) and QG (q 0), where G is E or !.

The Update( ) procedure performs the key operations of the SMNC. Figure B.3 is

the Update( ) procedure for the single variable, single cell system used to validate the

SMNA. The procedure loops from 1 to NUM - 1 and provides updates to all but the final

iteration or NUMth cycle. Both L2 and LA use i+l as an index value and consequently L -

cannot be called when i = NUM, since NUM + 1 has no meaning. This final cycle is a

55.

..-.7



L -7IF -% o,",W yP y1 V N- f q T 9

boundary case and is handled slightly differently. When i = NUM, DL = L3 - Li rather

than L4 + L3 - Li - L2 + (log(testQ / trajectory[i].Q) / 2). It is this final iteration that

produces the values of q for plotting.

Figure B.4 is the main program which contains the display algorithms. For the sake

of convenience during the debugging and operating of the code, constants such as H, V, "

*" RESOLUTION, and the like were set globally in the declaration part of the code. Thus

manipulation of parameters could be done at one place in the program code, namely the

beginning. ,

.5

.5,.

:5,.

56

V
",' ,'-,',.', "-" " ," ," ,',' -""," '" ""."-"' ', . /" . .,"-" -'. '. ". "" '." '..." . .'.-'..'.". . -. '. " ".", ",," ." ," .d,.



float geL..K(i)
flo~at q;

retur(tanh(q));

float geLQ(q)
float q; -:

- return(1.O);

fla eLI1 2 ,Q

float geql, q2, K, 

renirn((ql - q2 - (K *DELTA-J)) *(qi - q2 - (K *DELTAT))/

*(2.0 Q *DELTA T));

Figure B. 1 Get-K( , Get-Q( )and Get_L()

* infl()

unsigned int i;
* trajectory[0].q = NIT;
* trajectory[0I.K =get K(trajectory[0].q);

trjectory[0].Q =get-Q(tajectory[01.q);

for(i=1; i< NUM I; i++) f
trajectory~i].q = NIT;
trajectoryl.K =getLK(trajectory[iI.q);

trajectory iiiQ =geLQ~trajectory[i].q);

*for(i =0; i <WARMUP; i++)
updateo;

Figure B.2 Init()
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updateo
I

V unsigned int i;
int flag.q;
float DL, L , L2, L3, LA, C-prime, tesLK, testQ, x. y, cauch,
cauch = CAUCHY;
for (i = 1; i< NUM; i++)(
Li = get.L(trajectory[i].q, trajectory [i-1I].q,

trajectory~i-I].K. trajectory[i-i].OJ;
L2 =geLL(trajectoryfi+l].q, trajectory[i].q,

trajectory [i].K, trajectory [i].Q);
c-prime = cauchy~trajectory[i].q, temp);
while((q..prime <-- -cauch) 1! (cUPrime > cauch))

* q..prime = cauchy(trajectory[il.q, temp);
tesLK = get...K(qjwrime);
test..Q = geLQ(qjlrime);
L3 = get-.L(q..prime, trajectoryti- 1II.q.

trajectory [i-1I].K, trajectory [i- i].Q);
-s L4 = getLL(trajectory[i+1].q, q4Pr me,

tesLK, tes(_Q);
DL = LA + L3 - Li - L2 + (log(tesQ /trajectory[ilj.Q) I2);

flag.q = 0;
* if(DL < -25.0) f

x = 1.0;

else if(DL >25.0)
x 0.0;

5, 1.0

else
x = exp(-DL);
y = get-randfo;

if(x> y)
flag..q~i

if(flag.q=1)
A. uajectory[iI.q =q..prime;

trajectory[i].K =test_K;

* ~,trajectory[iII.Q tesLQ;

Figure B.3 Update()
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mainh0

unsigned int i, j;
int hist[60];
float n-bin[6O], q scle, ratio, factor, height;
ratio = YINCHES / XINCHES;
q-scale = (I.0 / RESOLUTION) *(1.01 H);
factor = q-scale * V *ratio;
init0;
for (i = 0; i < N; i-+-)

if~i% 1000-. - 0)
init0;

updateO;
hist[30 + (int)(trajectory[NUM.q)] += 1;

for(i = 0; i < (SCALE / RESOLUTION); i ++)
printf("593d". i - 30);
n. in[i] = (float)(hist[i] / (floa0)N);
height = n- binfi] * factor /RESOLUTION;
forfj = 0; j < height; j++)
printf(" )

pintf("x");,

Figure B.A Main(
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APPENDIX C: CENTERING MECHANISM

The Lagrangian L is one of the critical values in the mesoscopic scale. It leads to to

Gthe appropriate choices of the M values through a Boltzmann type method of rejection.
G

Additionally, L can provide information about the minima of M which permits the

application of a centering mechanism.

Examine the following quation:

G G G G'GG G /2,(ClV a) +(,)N- +(1/2 ) G M,

G G"

GG

F 2 '(C. 1) ."
G 2 G 2 G G'" G' "

1CY [ VG" ) + (G " ] (a G N  + (1/2)AG

-'. It has been shown [2] that more minima of L are found when the numerator contains.,%

terms only in M . In other words, the constant term = 0 in the numerator. Statistically,

any mechanism that promotes more or deeper minima is to be favored and Ingber [2] has

shown that a centering mechanism has plausible support in the neocortex. Since a

centering mechanism is therefore considered desirable in the SMNC, the only remaining

questions concern implementation.

Actually, for all the benefits to be derived in the SMNC from the use of a centering

mechanism, the implementation is almost trivially easy. It is accomplished simply by

G Gadjusting the synaptic background noise factors BE to B E. This is done by solving

-E E E E E E E = C
V - ((1/2)A+BE)vEN +((1/2)A 1 +B; )v, =0 (C2)

for both G =E and G =!.
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G
Care must be taken to discard results that represent the non-physical case of B' <0

in the square root of the denominator of Eq. 1. Fortunately, in all cases where a negative

GG
B 'E occurs, it is possible to find a positive value for B In addition to eliminating the

constant term in the numerator of Eq. 1, the centering mechanism also modifies the

constant terms in the denominator of Eq. 1.

The overall effect of implementing the centering mechanism is to increase the

number of minima of L and cluster the minima about zero. The SMNC operates in the

dominant excitation environment with the centering mechanism in operation. It is a ..

trivial task to alter the parameters to change environments to dominant inhibition or

balanced.
61
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